✨Tử Vi Hàm Số

Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện t...

Tử Vi Hàm Số

Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử -  Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng khoa ngày càng thịnh hành trong xã hội Việt - Nam hiện thời.

Số môn đệ hay tài tử chuyên nghiệp cũng Trần Đoàn rất đông đảo. Thiên hạ tin Tử - Vi, hay xem Tử - Vi và còn ham học Tử - Vi. Số này xuất hiện ở mọi giai tầng xã hội, từ giới trí thức đến giới kinh doanh, từ cơ quan hành chính đến đơn vị quân sự, chưa kể những người hành nghề xem bói. Việc hâm mộ ngành bói toán sinh ra nhiều giai thoại rất kỳ thú. Có quân nhân xem Tử - Vi trước khi hành quân, có chính trị gia xem Tử - Vi trước khi quyết định chấp chánh, có thương gia xem Tử - Vi trước khi đầu tư, có thanh niên xem Tử - Vi trước khi lập gia đình. Hầu hết những ai hoài nghi về xã hội hiện hữu đều có khuynh hướng thăm dò số mạng của mình trong khoa bói toán, dường như để tìm nơi huyền bí một đường lối hành động thích nghi trước những bất trắc của thời cuộc.

Bắt mạch đúng thị hiếu này, báo chí tập chí, thi nhau khai thác đề tài Tử - Vi để thu hút độc giả. Nào là lý giải, từ lá số của Tổng Thống Thiệu, Thiếu Tướng Kỳ, Đại Tướng Minh cho đến lá số những minh tinh, ca sĩ Việt Nam hoặc nguyên thủ ngoại quốc, nào là quảng bá kiến thức Tử - Vi trên mặt báo hay thuật lại những thành tích khám phá của những nhà lý số trên cuộc đời kỳ thú của một số nhân vật tên tuổi. Một số không nhỏ nhật báo có đăng trang Tử - Vi mỗi ngày. Hết tuần báo "Số Mạng", lại đến tuần báo "Khoa Học Huyền Bí", tiếp nhau khai thác Tử - Vi và những khoa bói toán khác. Thị hiếu đó đã khiến cho các ông thầy bói đương nhiên trở thành những nhân vật tai mắt vô cùng quan trọng trong việc chỉ điểm nếp sống cho đại chúng. Điều này cũng thúc đẩy một số không nhỏ bốc sư đã chịu khó tìm học xem bói để sinh nhai.

Cuốn sách gồm những nội dung chính như sau:

PHẦN I: Thiếp lập và luận đoán là số

Chương 1 - Cách thức thiết lập lá số

Chương 2 - Qui tắc đoán luận lá số 

PHẦN II: THAM LUẬN ĐẠI CƯƠNG VỀ TỬ - VI

Chương 1 - Luận về các cung

Chương 2 -  Luận về các sao

Chương 3 -  Luận về Bản Mệnh, Cục, Cách

Chương 4 -  Luận về Âm Dương Ngũ Hành

Chương 5 -  Luận về Hàm Số Tử - Vi

Chương 6 - Luận về giá trị khoa Tử - Vi.

👁️ 3 | ⌚2025-09-06 23:21:30.607
VNĐ: 160,350
Mua hàng tại Shopee giảm thêm 30%
Tử Vi Hàm Số
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
SÁCH: ĐẦU TƯ CHẤT LƯỢNG Mã sản phẩm: 8936067603965 Tác giả : Lawrence A. Cunning Ham - Torkell T. Edile & Patrick Hargreaves Dịch giả :Thu Uyên NXB: NXB Thanh Niên Kích thước : 14.5
Thông tin chi tiết Mã hàng 8935088538904 Tên nhà cung cấp Minh Lâm Tác giả Thiệu Khang Tiết NXB Hồng Đức Trọng lượng(gr) 1110 Kích thước 19 x 27 Số trang 431 Hình thức Bìa
Tài liệu trình bày về: Phương trình vi phân cấp 1; phương trình vi phân cấp 2; phương trình vi phân cấp cao, các hệ thức truy hồi và hàm Green; hệ phương trình
Cuốn Giáo trình Toán cáo cấp cho các nhà kinh tế - Phần II: Giải tích toán học (Tái bản lần thứ tư) gồm nội dung sau: Chương 1: Hàm số và giới hạn Chương
Combo Sách Tâm Lý Học - Nghệ Thuật Giải Mã Hành Vi + Thay Đổi Cuộc Sống Với Nhân Số Học (Bộ 2Cuốn) Đổi Cuộc Sống Với Nhân Số Học Cuốn sáchThay đổi cuộc sống
Tên đề tài: Cơ sở robot công nghiệp. Fundamentals of Industrial Robots (Dùng cho sinh viên Đại học và Cao đẳng kỹ thuật) Tác giả: GS.TSKH. Nguyễn Văn Khang, GS.TS. Chu Anh Mỳ. Khổ sách:16
Trở Về Từ Cõi Sáng (Tái bản năm 2022) Nhà xuất bản : Nhà Xuất Bản Thế Giới. Công ty phát hành : First News. Tác giả : Nguyên Phong. Kích thước : 14.5 x
Trên Đỉnh Phố Wall Peter Lynch là nhà quản lý tài chính số 1 ở Mỹ. Quan điểm của ông là: Tất cả các nhà đầu tư trung bình đều có thể trở thành những
Đồ Giải Tướng Thuật (Thiệu Vĩ Hoa) - Chu Tước Nhi (dịch): Tướng thuật được lưu truyền từ hàng nghìn năm trước đến nay vẫn không hề mai một, lý do bởi nó bao hàm
Combo Chết Vì Chứng Khoán + Trên Đỉnh Phố Wall Chết Vì Chứng Khoán Đáp ứng nhu cầu ngày càng tăng trong việc tìm hiểu về cổ phần, cổ phiếu, chứng khoán, chiến lược đầu
GIỚI THIỆU SÁCH 1. Trên Đỉnh Phố Wall : Peter Lynch là nhà quản lý tài chính số 1 ở Mỹ. Quan điểm của ông là: Tất cả các nhà đầu tư trung bình đều
Tác giả: Dona Đỗ Ngọc Khổ sách: 13x20cm Số trang: 202 Giá bán: 75,000 VNĐ ISBN: 978-604-1-13056-2 In lần thứ 1 năm 2018 NXB: NXB Trẻ NPH: NXB Trẻ Giới thiệu tóm tắt tác phẩm:
Combo Bộ sách Cẩm nang Định hướng Đột phá Học tiếng Anh (có file nghe) & Sách ngữ âm giành cho người mới bắt đầu (kèm CD) Sẽ là hành trang không thể thiếu trong
Stephanie có sắc đẹp cổ điển, nhưng hơn thế, nàng có một trái tim đam mê. Ham thích mạo hiểm, nàng dám lao đầu vào những cuộc tình cuồng nhiệt và cũng sẵn sáng chịu
Tác giả: Nhiều tác giả Nhà phát hành: Saigon Books Nhà xuất bản: Thế Giới Kích thước: 15.5 x 23.5 cm Số trang: 552 Năm xuất bản: 2023 Dịch giả: 1441 Mã sách: 8935278607236 AI
cuốn sách “Chiếu sáng tự nhiên công trình kiến trúc và hiệu quả năng lượng” nhằm tổng hợp và giới thiệu các chiến lược thiết kế chiếu sáng tự nhiên cho công trình kiến trúc
MÔ TẢ Thực tế đã chứng minh những nhà đầu tư thành công và kiếm được nhiều tiền nhất trên thế giới là những nhà đầu tư theo trường phái đầu tư dài hạn, đầu
Không phải ngẫu nhiên cuốn sách English Grammar in Use lại được nhiều học viên tìm đọc và tiếp nhận như một cẩm nang tra cứu, tham khảo trong quá trình tự học, đồng thời
Tác giả: Young Kim Năm Xuất Bản: 05-2014 Kích thước: 18.5 x 26 cm Nhà Xuất Bản Tổng hợp Loại bìa: Bìa mềm Số trang: 200 GIỚI THIỆU SÁCH: The Best Preparation For IELTS Listening
Giải Mã Quyền Lực Mềm Hoa Kỳ Dưới Thời Barack Obama “Nếu ai đó dí súng vào bạn, đòi bạn đưa tiền và lấy đi chiếc ví của bạn, không để tâm đến những điều
Để có nét chữ đẹp, ngoài những bài tập viết trong sách giáo khoa các em học sinh cần luyện tập thêm bài tập trong các sách bài tập. Cuốn sách Luyện Viết Chữ Đẹp
Công ty phát hành: Nhân Trí Việt Tác giả: Live ABC Năm Xuất Bản: 07-2011 Nhà Xuất Bản Tổng hợp Loại bìa: Bìa mềm Số trang: 168 GIỚI THIỆU SÁCH: Tourism English là quyển sách
Thông tin chi tiết Mã hàng8935325029073 Tên Nhà Cung CấpSkybooks Tác giảThanh Hằng NXBPhụ Nữ Việt Nam Năm XB2025 Ngôn NgữTiếng Việt Trọng lượng (gr)190 Kích Thước Bao Bì25 x 17.5 x 0.6 cm Số
Buổi Đầu Nhiếp Ảnh Việt Nam (Bìa mềm) Nhà xuất bản : Nhà Xuất Bản Thế Giới. Công ty phát hành : Phương Nam Book. Tác giả : Terry Bennett. Kích thước : 17 x
Great by Choice: Uncertainty, Chaos, and Luck-Why Some Thrive Despite Them All The new question Ten years after the worldwide bestseller Good to Great, Jim Collins returns with another groundbreaking work, this time to ask:
Giới thiệu sách “Tiểu thuyết của Lưu Từ Hân cho thấy trình độ thâm hậu và sự chuẩn bị chu đáo. Ông dùng kiến thức khoa học vững chắc làm nền tảng cho trí tưởng
Hoa Sen Trên Tuyết Trên nền câu chuyện cuộc đời của nhân vật có thật, triệu phú Alan Havey, Hoa sen trên tuyết gieo vào độc giả nhiều điều phải nghĩ. Xuất thân từ
Sứ Giả Của Thần Chết
TÀI CHÍNH DOANH NGHIỆP [The Finance Book: Understand the Numbers Even If You’re Not a Finance Professional] Vì sao Tài chính doanh nghiệp quan trọng? Quản lý tài chính rất quan trọng, đặc biệt
Thuộc Tính Sản Phẩm: ✩ Công ty phát hành: NXB Xây Dựng ✩ Tác Giả: TS. KTS. Nguyễn Đình Toàn ✩ Năm Xuất Bản: 2022 ✩ Kích Thước: 17 x 27cm ✩ Số Trang: 272
Đại học ngôn ngữ Bắc Kinh Biên Dịch : Trần Thị Thanh Liêm Nhà xuất bản Đại học quốc gia Hà Nội Giáo trình Hán Ngữ mới với những thay đổi về thứ tự
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số (bìa cứng) Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai mươi, nhưng
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Hàm Số bìa cứng Từ khi Trần Đoàn, đời nhà Tống, sáng lập ra khoa Tử - Vi cho đến ngày nay, mặc dù nhân loại đã đi quá nửa thế kỷ hai
Tử Vi Đẩu Số - Phân Tích Và Ứng Nghiệm Vận Số Tử vi đẩu số là một phương pháp đoán mệnh cổ xưa của người Trung Quốc với nội hàm bao gồm đầy đủ
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi (hay Tử Vi đẩu số) là một hình thức dự trắc vận mệnh đời người dựa trên cơ sở triết lý Kinh dịch với các thuyết âm dương, Ngũ hành, can bằng cách
Tử Vi Đẩu Số - Trung Châu Vận Đoán Tử vi đẩu số là một thành tố quan trọng của văn hóa thần bí Trung Quốc cổ đại. Bắt nguồn từ hệ thôhg tinh tú
Dự Đoán Đời Người Và Tứ Trụ Dự đoán theo 64 quẻ.Vận mệnh và thuật vận đoán,thuật chiêm tinh , thuật tử vi đẩu số ,thuật bát tự tử bình , thuật xem tướng, ấn
Trong toán học, một **hàm số** hay gọi ngắn là **hàm** (Tiếng Anh: _function_) là một loại ánh xạ giữa hai tập hợp số liên kết mọi phần tử của tập số đầu tiên với
thumb|220x124px | right | Giới hạn của hàm số f(x) khi x tiến tới a
Mặc dù hàm số không được định nghĩa tại , khi tiến
nhỏ| Hàm [[sin và tất cả các đa thức Taylor của nó đều là các hàm lẻ. Hình ảnh này cho thấy \sin(x) và các xấp xỉ Taylor của nó, các đa thức bậc 1,
Trong toán học, một **hàm số sơ cấp** là một hàm của một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số
Trong toán học, một **hàm số cơ bản** là một hàm một biến số và là tổ hợp của một số hữu hạn các phép toán số học , hàm mũ, logarit, hằng số và
Trong lý thuyết số, **hàm** **số học**, hoặc **hàm số lý thuyết số** đối với hầu hết các tác giả nói đến bất kỳ hàm _f_ (_n_) nào có miền là số nguyên dương và
**Đồ thị của hàm số** _f_ trong toán học là tập hợp tất cả các cặp có thứ tự . Nếu đầu vào _x_ là một cặp có thứ tự các số thực thì đồ
Trong toán học, một **hàm số tự nghịch đảo**, là một hàm số f mà là hàm ngược của chính nó: : với mọi x trong tập xác định của f. ## Tính chất chung
thumb|right|300 px|Đồ thị hàm số của logarit tự nhiên. **Logarit tự nhiên** (còn gọi là logarit Nêpe) là logarit cơ số e do nhà toán học John Napier sáng tạo ra. Ký hiệu là: ln(x),
phải|nhỏ|210x210px|Đồ thị của một hàm số bậc ba với 3 [[Nghiệm số|nghiệm số thực (tại đó đường đồ thị cắt trục hoành—thỏa mãn ). Hình vẽ cho thấy hai điểm cực trị. Phương trình của
**Cực trị của hàm số** là giá trị mà hàm số đổi chiều biến thiên khi qua đó. Trong hình học, nó biểu diễn khoảng cách lớn nhất từ điểm này sang điểm kia và
Thiệu Khang Tiết - Đệ Nhất Thần Số Đoán Mệnh: Tử vi đẩu số là một trong hai phái lớn của Mệnh lý học Trung Hoa cổ đại. Lý luận này xuất phát từ quan
nhỏ|[[Đồ thị của hàm số (màu đen) và tiếp tuyến của nó (màu đỏ). Hệ số góc của tiếp tuyến bằng đạo hàm của hàm đó tại tiếp điểm (điểm được đánh dấu).]] Trong toán
[[Đồ thị hàm sin]] [[Đồ thị hàm cos]] [[Đồ thị hàm tan]] [[Đồ thị hàm cot]] [[Đồ thị hàm sec]] [[Đồ thị hàm csc]] Trong toán học nói chung và lượng giác học nói riêng,
Trong toán học, một **hàm liên tục** hay **hàm số liên tục** là một hàm số không có sự thay đổi đột ngột trong giá trị của nó, gọi là những điểm gián đoạn. Chính
**Lý thuyết thứ tự** là một nhánh trong toán học nghiên cứu thuật ngữ thứ tự bằng cách sử dụng các quan hệ hai ngôi. Nó cho một khung hình thức để có thể mô
**Hàm số bậc hai** là hàm số có dạng ax^2+bx+c=y trong đó a,b,c là các hằng số và {\displaystyle (a\neq 0)} . Hệ số hoàn toàn có thể ở y. x và y lần lượt
thumb|right|[[Đường cong Tschirnhausen là một ví dụ về đường cong đại số bậc ba.]] Trong toán học, **đường cong phẳng đại số affin** là tập nghiệm của đa thức hai biến. **đường cong phẳng đại
Trong toán học, thuật ngữ " **phiếm hàm** " (danh từ, tiếng Anh là **functional**) có ít nhất 3 nghĩa sau : nhỏ|451x451px|Phiêm hàm [[Chiều dài cung - Arc length|chiều dài cung đi từ miền
Trong toán học, **hàm hợp** là một phép toán nhận hai hàm số và và cho ra một hàm số sao cho . Trong phép toán này, hàm số và được **hợp** lại để tạo
Trong toán học, **hàm softmax**, hoặc **hàm trung bình mũ**, Biệt thức tuyến tính phân tích nhiều lớp, Phương pháp phân loại Bayes, và mạng neuron. Đặc biệt, trong hồi quy logistic đa biến và
Trong tính toán lượng tử, **thuật toán lượng tử** là một thuật toán chạy bằng mô hình thực tế của tính toán lượng tử, mô hình được sử dụng phổ biến nhất là mô hình
thumb|Đồ thị của hàm đồng nhất trên trường số thực Trong toán học, **hàm đồng nhất** (), còn gọi là **quan hệ đồng nhất**, **ánh xạ đồng nhất** hay **phép biến đổi đồng nhất**, là
thumb|Minh họa hàm tuần hoàn với chu kỳ P. Trong toán học, một **hàm tuần hoàn** là hàm số lặp lại giá trị của nó trong những khoảng đều đặn hay chu kỳ. Ví dụ
thumb|right|[[Hàm Lôgit]] thumb|Biểu đồ của [[hàm lỗi]] **Hàm sigmoid** là một hàm số có dạng đường cong hình "S" hay còn gọi là ** đường cong sigmoid**. Một ví dụ phổ biến của một hàm
Một hàm được định giá trị vectơ, cũng được gọi là **hàm vectơ**, là một hàm toán học của một hoặc nhiều biến với miền giá trị của nó là một bộ của những vectơ
Trong toán học, **hàm von Mangoldt** là hàm số học được theo tên nhà toán học Đức Hans von Mangoldt. Nó là một trong những ví dụ quan trọng về hàm số học không nhân
right|thumb|Đạo hàm bậc hai của một [[hàm số bậc hai là hằng số.]] Trong giải tích, **đạo hàm bậc hai** của một hàm số là đạo hàm của đạo hàm của . Có thể nói
Trong toán học và vật lý, **toán tử Laplace** hay **Laplacian**, ký hiệu là \Delta\,  hoặc \nabla^2  được đặt tên theo Pierre-Simon de Laplace, là một toán tử vi phân, đặc biệt trong các toán
Trong toán học, **hàm Dirichlet** là hàm chỉ thị \mathbf{1}_\Q của tập số hữu tỉ \Q, với \mathbf{1}_\Q(x) = 1 khi là số hữu tỉ và \mathbf{1}_\Q(x) = 0 khi không phải là số hữu
Trong toán học, **hàm đếm số nguyên tố** là hàm số đếm số lượng các số nguyên tố nhỏ hơn hoặc bằng với một số thực _x._ Nó được ký hiệu là (_x_) (không liên
phải|nhỏ|246x246px| Đồ thị của một đa thức bậc 5, với 3 nghiệm thực và 4 [[điểm cực trị. ]] Trong đại số, **hàm số bậc năm** là hàm số có dạng : g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, trong đó
🍲 GIA VỊ HẦM THỊT, CHÂN GIÒ CAY TỨ XUYÊN 🍲 - Món hầm này dùng bắp bò, thịt vịt hay móng lợn, hầm rất lâu đến khi thịt thật là mềm. - Thịt hầm
thumb|Các phần số _n_ với hạng lớn nhất _k_ Trong số học, sự **phân hoạch** một số nguyên dương _n_ là cách viết số đó dưới dạng tổng của các số nguyên dương. Hai cách
SET GIA VỊ HẦM GÀ NHÂN SÂM HÀN QUỐC - Xuất xứ: Hàn Quốc- Trọng lượng: 100g Set gồm: táo đỏ, nhân sâm, hoàng kỳ, cát căn và 1 số nguyên liệu thảo dược khác,
thumb|right|Hàm lồi trên một đoạn khoảng cách. right|thumb|Một hàm (màu đen) là lồi nếu và chỉ nếu vùng phía trên [[đồ thị của hàm số của nó (màu xanh) là một tập lồi.]] thumb|Một đồ
phải|Sơ đồ hàm Weierstrass trong khoảng -2..2. Hàm có định dạng [[phân dạng, khi phóng to bất kỳ vùng tương tự vòng đỏ đều có định dạng tương tự cả sơ đồ chung.]] Trong toán
**Số hoàn hảo** (hay còn gọi là **số hoàn chỉnh**, **số hoàn thiện** hoặc **số hoàn thành**) là một số nguyên dương mà tổng các ước nguyên dương thực sự của nó (các số nguyên